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Digression Calibrated Geometry Harvey Lawson 82

Note There is a useful tool to check a min submfd minimizes

area in some class called calibration argument

Let U E LM g be an open subset

and 2k E U be an oriented submfd

Def't n Ek is calibrated by a k form w C NCU if

dw O ie W is a closed form in U

WITE area form on E
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Applications
I Thm All complex submfd of are homologically area minionri

Reason Kehler form w 2 Wm calibrates Cpxsubmfd Z

It Prop If U E M is foliated by min hypersurface i.e U 27
n i

then each leaf It is homologically area min in U

r the Reason Define Wp areaform of the leaf EeX I 2 passesthrough p
I I trivial

i U follows dw Hz dVolm 0

2
ohoHI Cor 1 2 E R min graph over R E B

homological 22 area minimizing in R B n

Reason Translatesof 2 gives a min foliation
of Rx Ips

In particular if E is an entire min graph Cie D D

2 is area minimizing in IR even among non graphical
competitors

This implies the following Euclidean Volume Growth
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Bernstein type Results
T E

Bernstein Theorem Bernstein4915

Any entire minimal graph in IRS is a plane
i e If u B IR solves the MSE then

UCxY ax cby C for a b C C IR constants

Remarks Ci Differentfrom entire harmonic functions In O

eg UCx y XZ y on IRZ

Ei The same theorem holds up to IR n E 8

Fleming 62 DeGiorgi 65 Almgren66
Simons 68

Iii Fhm is false in dim n 8 Simons 68 Bombieri DeGiorgi
Giusti 69

Civ This is closely related to regularity theory of Min Sufaces

A Geometricproof of Bernstein Thun n 3 L Simon

Let I graph u E 1123 be an entire min graph

E minimizing stable stability inequality

Euclidean Volume Growth
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Idea Choose a seq of cutoff functions on E set

Cf 1 uniformly on apt subsets of E
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Logarithmic cutoff trick
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Q can one relax the hypothesis of being entire min graph

Stable Bernstein Conjecture Ch E 8 still open even for n 4

In E Dsn stable Complete I hyperplane
immersed min hypersurface

Remarks
1 This conjecture is answer affirmatively under certain

additional assumptions e.g Euclidean volume growth

n 3 4.5 Schoen Simon Yau 75 embeddness L Simon 76

2 This is settled in full generality in din n 3

independently by Fisher Colbrie Schoen 80

and Do Carmo Peng 79


